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Considering that the various schemes of spacecraft rendezvous
with orbitzl station consist of three stages, and that either of these
stages congists in its turn of three vhases, the present work is devoted
to the problem of spacecraft guidance at long-range rendezvous phase with

orbit:zl station, utilizing the second derivative of the relative remote-

ness for information on line-of-sight-rotation [1]. W

* ®

INTRODUCTION Al'D PRCBLEN DEFIIITICH

The problem of convergence and rendezvous in orbit has attracted
in the course of tiie past few years the attention of numerous specialists.
As 2 result, there emerged a sutstantial number of organizational schemes
for spacecraft rendezvous prccess with ortital station. These schemes can
be subdivided irto taree staces [1]1, (2], [3]:

l1.- Direct lzunchin~ of spacecraft into the orbit plane of the
space station.

2.-0Utilization of »hasing ellipse or of parking orbit.

z .- Noncoplanar fli~ht.
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In its turn, any of the indicated rendezvous schemes consist
of three phases:

1.- The active region.

2.- The passive flight region.

%,- The escape region to station's orbit and maneuvers required
for rendezvous materialization.

The guidance is also realized correspondingly with the three indi-
cated phases for rendegvous.

Thus, in the first phase, the problem resolved is, in essence, that
of bringing out the spacecraft into the pre-assigned orbit,

In the second phase, guidance is reduced to the selection of its
course from the condition of collision with the station without applying
thrust [1]. - This phase may be called long-range guidance.

The third phase consists in the materialization of convergence
velocity decrease to gero and of coasting. At times, this phase is referred
to as short-range guldance.

The present work is concerned with the problem of spacecraft guidance
in the long-range rendezvous phase with the orbital station, utilizing the
second derivative of relative remoteness for information on line-of-sight
rotation.

The condition that has to be satisfied by the relative motion of
spacecraft and orbital station in the rendezvous phase under consideration,
consists in that the relative velocity vector coincides as precisely as
possible with the line of sight ([11].

1, EGUATIONS OF SPACECRAFT'S RELATIVE MOTION

Let us consider a2 rectanpular inertial system of coordinates
(x, Y, 2) with origin at the Earth's mass center, whose axes form the
right-handed system (Fig. 1l).

Two point move in that system: the point 1, that is, the space-
craft (X, Y3, Z7) ; point 2 — the orbital station (X, Y, Z).

We shall construct a system of coordinates ( §, 1, {) with the
center at the point ( Xy, Y3, Z7). so that the axis of both systems are
parallel [4].
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Let us consider the motion of the point (X>, Y, Z3) in the system
(%, 1, £), that the motion of the former relative to the point (Xy, Yy, 23).
The coordinates of the point (X5, Y,,Z,) are linked in the relative system
of coordinates with the coordinates in the inertial system by the following

correlations

-§=X2 S
1=1> =7, (1)
Upon differentiating these correlations twice, we may write the

equations of motion in the relative system of coordinates (fn¢{) as follows:

;§ =Wyy — Wix »
N =Wy — Wy (2)
§ =Wy — Wy

where

I

Wy = o IFyy,

are the equations of motion of the points in the inertial system of coore~
dinates under the action of the pre-assigned systems of forces.

The investigations of the relative motion could be conveniently
conducted in the spherical system of coordinates, lLet us write the equa-
tions in the spherical system of coordinates ( Dé&;£,) ( see Fig, 2).

The ecuations of link have the form

S = Dcos &1 cos g2,

1=Dsing , (3)
L =Dcos 61 sinea o
The equations of relative motion in the spherical system of
coordinates have the form:

oo/oo




id

D -Déf —Dcosablézz = (Wax —'wlx) cOos8 ilcOS F’Z + (‘ﬂzy -—w'lY) sin€1 +
+ (wzz — Wyz) cos &, einé, |
1 d 4 . 2
OIS :D2?1+Dsin £y cos ty €y = (Woy - Wyy) &in € cos &, + (4)
+ (Wyy =Wyg)cos § — (Waz — Wy, )ein & sin &,

1
Dcos §,

d 2 4 o v,
. —%—(chos él &2)= —(sz-wu)s:m &2 +(WZZ-- ﬁﬂ) cos 52

Let us consider at further length the following particular
case of relative motion.

~zsume that the spacecraft and the orbital station are situa~
ted in free flight. Aissume also, that the relative remoteness is so
small that the influence of the gravitational field upon the relative
motion can be neglected. Then, the equations (2) will take the form:

t=q=£f=0 (5)

and the equations (4) will be written as follows:

5 - D 512 —Dcoszi-_L ézz = 0

1.2 (%) + Dsingycos gy ¢ =0 (6)

1 .4 2 3 -
Doost, 4t ( D? cos £, E€,)=0

Integrating the equations (6), we shall obtain the expression

for the relative remoteness

- 2 2
2 =2, DDa2  Vpio+ V
D" =V (t+ 07 4 -Blo_gn20 5% )
'k Ve

where
-2 « 2 2
Vo = Dy * Vpio *+ Vn2o,

here V, is the relative velocity at a certain zero moment of time,
D, and f)o are respectively the relative remoteness and the velocity

o
of convergence at the same moment of time, V,; and V> are
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the relative velocity components in a plane perpendicular to the relative
remoteness (line of sight), which are linked with the spherical coordina-

tes as follows :

vnlsDil,

Vnz = Dcos &3 ';2.

ano and Vnao are their values at the moment of time gero.
One of the first integrals of the system (6) is the energy integral
Voz - 152 + Vfl + Vﬁa (8)

It follows from formula (7) that if V,, %0 and Vpo0 ¥+ 0,
the converging devices will attain the least relative distance at the
noment of time .

Do Do

Vs

and then will begin to drift away.
The square of that distance is

2 Vnlo + Voo .,
h = -— '
p ¥ Ds (9)

2, -~ Ol TH: UTILIZATION OF THE SECOND DERIVATIVE OF REMOTENESS
FOR TEy INFORMATION ON SIGHTING LINE ROTATION

We examined in the first chapter the model of relative motion
in a force-free field. If the spatial device (spacecraft) is in free
flight, or moves under the action of an active force, applied éiong the
normal to the line of sight, the first equation of the system (6) is valid:

:B — Déla-— DCOSZ E1 £2 =0
Multiplying this equation by D, we shall obtain

Db =D° éla - choaaél '022 (10)



The right-hand part of the equation (10) represents the square
.0f the velocity component perpendicular to the line of sight.
We have in truth:

Va1 =06

2 2
DB = Vo1 * Vo (11)

It follows from the equation (11), that at D= o,
an = Vnz = 0, that is, the conditions for parallel convergence are.
satisfied. Inversely, at V 1=Vnp = 0, we shall have D = O.

Therefore, the sec:nd derivztive of relative remoteness can serve
as the source of information on line-of-sight rotation in a force-free
field, istead of the angular velocity.

Note one interesting property of the parameter 5 As follows
from the equation (11), parameter D cannot take negative values, that is,
we always have D 2>0.

Let us rewrite the equation (11) i:. the form

2
D=3 — 5

L4

where V - is the relative velocity.

It follows from this last equation that for a given wvalue of the
relative velocity, the greatest value of D is obtained at time of fulfill-
ment of the condition D =0, that is, at time of attaining the minimum
distance between the converging bodies, and at very great relative remo-
teness ].). 4s near gzero, that is, at D~» oo, the second derivative of
the relative remoteness approaches gero. |

Fige 3 shows the variation of parameters él’ f).. and DD with
time,

From the first equation of the system (6) we may obtain the cor-

relation
SD = 2V, 8¢ + 2V , cos ¢936, (12)

which allows to compare among themselves the measurement precisions of

angular velocity signals and of the second derivative of remoteness.
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The partial derivatives
-)% = 2V,1 and —}% =2Vna cos ¢,

are proportional to the relative velocity component in a plane perpendi-
cular to the line of sight.

It was pointed out above, that at the long-range rendezvous
phase the guided spacecraft homing must be effected in such a way, that
the relative velocity vector coincide as precisely as possible with the
line of sight.- Usually, for the solution of this problem the gﬁiding
action is directed along the normal to the line of sight, so that the
problem of guidance amounts to the stabilizatidn of the line of sight in
the inertial space (X, Y, Z), the guiding signal being the angular velocity
of the line of sight. If we utilize the second derivative of relative re-~
moteness for information on line-of-sight rotation, while the guiding
action, induced by the engine of spacecraft, is directed along the line
of sight in this case too, the equations of relative motion will be :
2

o '2 ,’:
D -DEl ~— Dcos ¢t &

16 =0

%%(Daél)-i-nsinﬁlcos t1£'22= fl(i)), (13
1 d
Dcosfl'iz

( D cos® & 522 = 1, (1‘)') R

where £, (D) and 1, (D) are the guiding accelerations acting upon the
spacecraft,

Therefore, it is possible to construct a closed guidance system
at the long-rangse rendegzvous phase by merely conducting measurements of
the second derivative of relative remoteness with, for example, the aid
of the Doppler effect, and utilizing the information obtained for the
formulation of ths appropriate guidance, It should be noted at the same
time, that one channel (the line of sight) is utilized to obtain the in~
formation about the relative motion, while the other two, perpendicular
to the first, serve to achieve puicdance by the motion of spacecrait's

center of masses.

xhn® THE END sens
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